RRT: the regularized resolvent transform for high-resolution spectral estimation

نویسندگان

  • Chen
  • Shaka
  • Mandelshtam
چکیده

A new numerical expression, called the regularized resolvent transform (RRT), is presented. RRT is a direct transformation of the truncated time-domain data into a frequency-domain spectrum and is suitable for high-resolution spectral estimation of multidimensional time signals. One of its forms, under the condition that the signal consists only of a finite sum of damped sinusoids, turns out to be equivalent to the exact infinite time discrete Fourier transformation. RRT naturally emerges from the filter diagonalization method, although no diagonalization is required. In RRT the spectrum at each frequency s is expressed in terms of the resolvent R(s)(-1) of a small data matrix R(s), that is constructed from the time signal. Generally, R is singular, which requires certain regularization. In particular, the Tikhonov regularization, R(-1) approximately [R(dagger)R + q(2)](-1)R(dagger) with regularization parameter q, appears to be computationally both efficient and very stable. Numerical implementation of RRT is very inexpensive because even for extremely large data sets the matrices involved are small. RRT is demonstrated using model 1D and experimental 2D NMR signals. Copyright 2000 Academic Press.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The extended Fourier transform for 2D spectral estimation.

We present a linear algebraic method, named the eXtended Fourier Transform (XFT), for spectral estimation from truncated time signals. The method is a hybrid of the discrete Fourier transform (DFT) and the regularized resolvent transform (RRT) (J. Chen et al., J. Magn. Reson. 147, 129-137 (2000)). Namely, it estimates the remainder of a finite DFT by RRT. The RRT estimation corresponds to solut...

متن کامل

Regularized resolvent transform for direct calculation of 45 degrees projections of 2D J spectra.

The regularized resolvent transform (RRT) has been applied in a novel way to J-resolved spectra. This involves the direct calculation of the 45 degrees projection without constructing the 2D spectrum. The results show a significant resolution enhancement over that obtained by the 45 degrees projection of a 2D Fourier spectrum, even for much larger signals. In particular, RRT is able to resolve ...

متن کامل

Pii: S0079-6565(00)00032-7

1. Introduction and historical remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 2. Spectral estimators, parameter estimators and nonlinear problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 3. Non-Hermitian quantum mechanics: connection to the harmonic inversion problem (HIP) . . . . . . . . . 167 4. HIP can be solve...

متن کامل

Filter diagonalization method for processing PFG NMR data.

Obtaining diffusion coefficients from PFG NMR diffusion (a.k.a DOSY) data is, in the general case, an ill-posed problem. Numerous methods for processing such data have therefore been developed, each with different constraints and assumptions. The Regularized Resolvent Transform (RRT) is a proven and robust method for spectral inversion. In earlier papers RRT, albeit very slow, was argued to be ...

متن کامل

Determination of Fiber Direction in High Angular Resolution Diffusion Images using Spherical Harmonics Functions and Wiener Filter

Diffusion tensor imaging (DTI) MRI is a noninvasive imaging method of the cerebral tissues whose fibers directions are not evaluated correctly in the regions of the crossing fibers. For the same reason the high angular resolution diffusion images (HARDI) are used for estimation of the fiber direction in each voxel. One of the main methods to specify the direction of fibers is usage of the spher...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of magnetic resonance

دوره 147 1  شماره 

صفحات  -

تاریخ انتشار 2000